Algebra 2

3-03 Solve Quadratic Equations by Graphing and Finding Square Roots (3.1)

Solving Quadratic Equations by

Graphing

- 1. Make the equation equal ______.
- 2. _____ the equation.
- 3. Find the *x*-values of the _____.

Square Roots

- 1. Solve for the ______ expression.
- 2. Take a ______. Remember to put _____.
- 3. Finish ______ for *x*.
- 4. _____ your solutions.

Solve by graphing $x^2 - 2x - 3 = 0$

↓						-
			_			

Solve by using square roots.		
$2x^2 + 14 = 70$	$4x^2 + 20 = 16$	
$\frac{3}{4}(x+1)^2 = 10$	$2x^2 = 5x^2 + 24$	

A fruit stand charges \$3 per pound of apples and sells 20 pounds each day. They try dropping the price by \$0.50 and sell 5 more pounds a day. How much should the fruit stand charge to maximize their daily revenue? What is their maximum daily revenue?

95 #1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 20, 33, 35, 49, 50, Mixed Review = 20